The following classification dataset and problems are derived from the Amsterdam Library of Textures (ALOT) color image database made of 250 classes of textures. Each of the 3 tables below correspond to a given variation in acquisition conditions. For technical details about the image acquisition conditions, see ALOT website.

Image files are named according to the following pattern: <class>_<camera><illumination>, where:

  • <class> ∈ {001..250}
  • <camera> ∈ {c1..c4}
  • <illumination> ∈ {l1..l5,l8,i}, where l1..l5 are 5 different illumination directions, l8 is a hemispherical illumination (5 lights turned on) at 3075K, and i likewise at 2175K.

Download ALOT images at half resolution (768×512 pixels, 4GB)

 

Each problem is described by 3 files according to the Outex description:

  • classes.txt (identical for all problems) contains the number of classes, then the image, class number, and cost information (unused here) for each class
  • test.txt contains the number of test images, then the image file name and (true) class number for each image
  • train.txt contains the number of train images, then the image file name and class number for each image

Download all problems (see below for individual problem download)

 

Table 1: Classification datasets with illuminant variations (1 variation)

Problem ID Camera Number of train images Train images file names Number of test images Test image file names Link
000_illuminant-c1 c1 250 (250×1) 001_c1l8..250_c1l8 250 (250×1) 001_c1i..250_c1i Download
001_illuminant-c2 c2 250 (250×1) 001_c2l8..250_c2l8 250 (250×1) 001_c2i..250_c2i Download
002_illuminant-c3 c3 250 (250×1) 001_c3l8..250_c3l8 250 (250×1) 001_c3i..250_c3i Download
003_illuminant-c4 c4 250 (250×1) 001_c4l8..250_c4l8 250 (250×1) 001_c4i..250_c4i Download
All above problems           Download

 

Table 2: Classification datasets with illumination direction variations (5 variations)

Problem ID Camera Number of train images Train images file names Number of test images Test image file names Link
004_incidence-c1 c1 250 (250×1) 001_c1l8..250_c1l8 1250 (250×5) 001_c1l(1..5)..250_c1l(1..5) Download
005_incidence-c2 c2 250 (250×1) 001_c2l8..250_c2l8

1250 (250×5)

001_c2(1..5)..250_c2(1..5) Download
006_incidence-c3 c3 250 (250×1) 001_c3l8..250_c3l8

1250 (250×5)

001_c3(1..5)..250_c3(1..5) Download
007_incidence-c4 c4 250 (250×1) 001_c4l8..250_c4l8

1250 (250×5)

001_c4(1..5)..250_c4(1..5) Download
All above problems           Download

 

Table 3: Classification datasets with observation direction variations (3 variations)

Problem ID Illumination Number of train images Train images file names Number of test images Test image file names Link
008_observation-l1 l1 250 (250×1) 001_c1l1..250_c1l1 750 (250×3) 001_c(2..4)l1..250_c(2..4)l1 Download
009_observation-l2 l2 250 (250×1) 001_c1l2..250_c1l2 750 (250×3) 001_c(2..4)l2..250_c(2..4)l2 Download
010_observation-l3 l3 250 (250×1) 001_c1l3..250_c1l3 750 (250×3) 001_c(2..4)l3..250_c(2..4)l3 Download
011_observation-l4 l4 250 (250×1) 001_c1l4..250_c1l4 750 (250×3) 001_c(2..4)l4..250_c(2..4)l4 Download
012_observation-l5 l5 250 (250×1) 001_c1l5..250_c1l5 750 (250×3) 001_c(2..4)l5..250_c(2..4)l5 Download
013_observation-l8 l8 250 (250×1) 001_c1l8..250_c1l8 750 (250×3) 001_c(2..4)l8..250_c(2..4)l8 Download
014_observation-i i 250 (250×1) 001_c1i..250_c1i 750 (250×3) 001_c(2..4)i..250_c(2..4)i Download
All above problems           Download